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Abstract

Consumers interact with firms across multiple devices, browsers, and machines; these
interactions are often recorded with different identifiers for the same consumer. The failure
to correctly match different identities leads to a fragmented view of exposures and behaviors.
This paper studies the identity fragmentation bias, referring to the estimation bias resulted from
using fragmented data. Using a formal framework, we decompose the contributing factors of
the estimation bias caused by data fragmentation and discuss the direction of bias. Contrary
to conventional wisdom, this bias cannot be signed or bounded under standard assumptions.
Instead, upward biases and sign reversals can occur even in experimental settings. We then
compare several corrective measures, and discuss their respective advantages and caveats.
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1 Introduction

Consumers’ digital footprints are becoming increasingly fragmented. A typical consumer uses
multiple devices andnavigates acrosswebsites throughout an online purchase journey. Companies
and websites typically track consumers via cookies, which are text files generated to identify a user
agent (a browser-device combination) when consumers first visit a website. However, cookies
are browser, device, and site specific. As such, a consumer is often associated with multiple,
mutually disconnected cookie identifiers across websites and browsers, with each one capturing
only a fraction of their ad exposures and behaviors. We call this fracture of identifiers and records
identity fragmentation.

Websites often deploy several workarounds for the identity fragmentation problem. One
solution is using a device ID to identify users. For example, mobile apps frequently obtain IDFA
(advertiser ID for Apple devices) and Android’s Advertiser ID for tracking. Using a device-level
identifier alleviates but does not completely avoid fragmentation, since a user can often navigate
through multiple devices within the same journey. For example, Facebook reports that 32% of
users who show interest in their mobile ads convert on their desktop.1 Alternatively, advertising
platforms sometimes perform cookie-syncing, which matches several fragmented records across
publishers and ad-tech partners. Cookie syncing canmatch only up to 60% of fragmented records2,
while slowing down the ad loading by 19 seconds on average3. Despite the short-comings of
device IDs and cookie syncing, they are the preferred workarounds for most websites. Compared
to alternatives such as a login wall, these two approaches can often be implemented without users’
explicit consent, thus minimizes friction and deterrence of potential customers.

Unfortunately, the advantages of device IDs and synced cookies also make them the target of
industry self-regulation that responds to consumers’ demand for privacy. Starting with iOS 14,
Apple requires that mobile apps seek users’ opt-in consent before collecting their IDFA. On the
web end, Chrome ultimately follows Firefox and Safari, announcing that they will stop supporting
3rd-party cookies starting in 2021, also citing privacy concerns. Since all cookie syncing relies
on third-party cookies, Chrome’s move essentially makes cookie syncing obsolete. As the world
becomes more and more attuned to user privacy, identity fragmentation is here to stay.

This paper analytically characterizes how fragmented identifiers bias model estimates and
inference, which we call the identity fragmentation bias. In its simplest form, the problem
manifests as an inability to size the user group. More importantly, causal associations across
cookies and devices cannot be reliablymeasuredwithout a unique identifier. Consider a consumer
who sees an ad on her desktop and later buys the advertised product on her phone. If these
interactions are taken as independent observations from different users, the causal link between

1https://www.facebook.com/business/news/cross-device-measurement
2https://www.adexchanger.com/data-driven-thinking/ad-tech-needs-a-shared-id-solution-asap
3https://headerbidding.co/cookie-syncing/#privacy
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the ad exposure and the purchase is broken. Researchers and firms who use fragmented data may
thus estimate the advertising effect with bias.

We decompose the bias into three components in the context of a linear model. The first
component arises because variations in the outcome variable are split. As a result, each fragmented
identifier only captures a fraction of the outcome variation, leading to an attenuation bias. The
second component emerges from the fracturing of covariates. This fracture prevents the variation of
covariates in the mobile record from being associated with outcomes in the laptop record and vice
versa, creating an omitted variable bias. The third component is caused by a spurious correlation
between fragmented outcomes and covariates. This can occur with a device-level activity bias or a
cross-device substitution triggered by ad exposure. The latter two bias components have arbitrary
signs andmagnitudes. As a result, the direction of the identity fragmentation bias is undetermined
without further assumptions. Moreover, this bias does not converge to zero in the limit. We show
that these conclusions hold regardless of whether the model assumes the estimate of interest is
homogeneous or device-specific.

We discuss special cases where the bias can be completely characterized. In particular, we
show that when an experiment places equal treatment probabilities (for binary treatments) or
intensities (continuous treatments) across sites and devices, the raw estimate is attenuated by a
factor equal to the number of fragmented records per user. In this case, we can obtain an unbiased
estimate for the true parameter by multiplying the raw estimate with the number of fragments.
This finding is closely related to Coey and Bailey (2016), who propose a debiasing estimator for
cookie-level estimates under similar conditions.

We show the robustness of this result by examining a number of model perturbations. First,
we compare models where the parameters of interest are common across fragments and models
where parameters of interest are fragment-specific. Then we examine a setting with an arbitrary
number of fragments. We have also analyzed cases where data contain a mixture of fragmented
and complete identities. In all cases, the identity fragmentation bias persists and is unsigned
without further assumptions.

Guided by the analytic form, we compare several solutions for the identity fragmentation
bias in the general setting. Existing solutions can be categorized into two buckets. The first
is identity linking (with cookie syncing being one example), which works by identifying and
matching fragmented records that belong to the same user. This approach is widely adopted in the
industry. However, even the best identity linking methods only stitches up part of the fragmented
records. We show that partially matched data often complicates the bias pattern and prevents
estimator bounding and debiasing. The second approach, proposed by Coey and Bailey (2016),
adjusts post-experiment estimates based on a set of symmetry assumptions. When the assumptions
hold, this approach can effectively debias the average treatment effect estimates without the need
to stitch up the raw data.
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We then propose a third approach, the stratified aggregation. Instead of constructing user-
level records, this approach works by constructing user group-level records (aggregation) and
refining the group using covariates (stratification). The estimate after stratified aggregation is
unbiased, but with a higher variance. By relaxing the need for constructing user-level data,
stratified aggregation can achieve a wider coverage, thereby avoiding the complications caused by
identity linking. It also works without additional assumptions or an experiment. This approach
works better when the covariates for constructing the stratified groups are high-dimensional, and
when the dataset is large enough to account for the increase in variance.

To illustrate the bias and evaluate stratified aggregation, we conduct an empirical exercise
using data from an online retailer. In this setting, consumers interact with the seller across mobile,
desktop, and tablet devices; their identities are made known to us by an identity matching vendor.
We find that when the data is fragmented at the device level, the ad effect estimates are biased
upwards. This upward bias is caused by a dominant device-level activity bias. Using constructed
demographic variables, we show that stratified aggregation can remove the bias, but comes at the
cost of precision.

Our paper contributes to several strands of literature. The first one examines the role of
customer identifiers for delivering accurate insights, including Rossi, McCulloch and Allenby
(1996); Aziz and Telang (2016); Trusov, Ma and Jamal (2016), and Miller and Skiera (2018). While
these papers demonstrate the value of unfragmented data for profiling or prediction, we focus on
the impact of fragmented data on parameter estimates.

Second is the literature that recognizes problems from using cookie-level in lieu of individual-
level data, including Chatterjee, Hoffman andNovak (2003); Manchanda et al. (2006); Rutz, Trusov
and Bucklin (2011); Bleier and Eisenbeiss (2015); Hoban and Bucklin (2015), and Blake, Nosko and
Tadelis (2016). While these papers articulate the possibility of problems, we formally characterize
the bias that emerges from identity fragmentation. The analytic form allows us to evaluate and
compare different solutions to tackle the fragmentation bias.

Our paper is closely related to Coey and Bailey (2016), who also examine the analytic form
of estimation bias caused by identity fragmentation. They show that the use of cookie-level data
leads to an attenuation bias in a setting free from confounds such as activity bias (Lewis, Rao
and Reiley, 2015; Johnson, Lewis and Nubbemeyer, 2017) and cross-channel (device or cookie)
substitution (Goldfarb and Tucker, 2011). This setting allows them to perform post-experiment
adjustment to debias cookie-level estimates. We take a step forward by accounting for activity
bias and cross-channel substitution when characterizing the bias. We also relax their assumption
that cookie uses are ex-ante symmetric, so that our framework can be generalized to discuss other
cross-channel settings.

Several authors have proposed approaches to alleviate the data fragmentation problem. These
approaches include data linking (see Abramitzky et al. forthcoming and Bailey et al. 2020 for a
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review), experiment-based adjustments (Coey and Bailey, 2016; Koehler et al., 2016), missing data
imputation (Novak et al., 2015), and aggregation (Rutz, Trusov and Bucklin, 2011; Blake et al.,
forthcoming). Our paper takes another step forward by comparing existing solutions and propos-
ing a method to improve the last approach. In particular, we propose refining the aggregation
using a combination of variables associated with the fragmented identities, in a way similar to
what the industry calls “fingerprinting” but less restrictive.4

We organize the rest of the paper as follows. Section 2 illustrates the fragmentation problem
using an example. Section 3 formally characterizes the bias, followed by a discussion on bias
in experiment settings and generalizations. Section 4 compares several solutions, and Section 5
concludes.

2 An Illustrative Example

Consider a setting where consumers each has two devices, a mobile (M) and a desktop (D).
Consumers are exposed to ads, and the researcher seeks to estimate the impact of ads on purchases.
Suppose the advertising effect does not hinge on which device is used for ad delivery. Table 1(a)
presents two consumers who have been exposed to 2 and 4 ads, respectively. Since both consumers
purchase equal amounts, advertising has no discernible effect

(
� = 0

)
. .

Now consider the data where identities are fragmented. Since the researcher can no longer
associate devices to consumers, she mistakenly assumes that there are four distinct observations.
Table 1(b) shows that if consumers see adsondevices that they thenpurchase on, a spuriouspositive
correlation occurs, creating an upward bias in the estimated advertising effect. In this example,
the parameter estimate is � = 0.4. In other cases, the bias can go in the opposite direction. Suppose
instead that consumers see ads more often on their phones but make purchases predominantly on
their desktops. Then the estimated advertising effect can be negative, as in panel (c) of Table 1.

This stylized example shows that identity fragmentation can lead to significant biases, which
cannot be signed without additional information. In the next section, we formally characterize
the identity fragmentation bias and decompose it into three components. We then discuss which
feature of fragmenteddata creates eachbias component, anduse thefinding to guide ourdiscussion
on debiasing approaches.

4This paper is also related to the broad econometrics literature on overcoming unknown network inteference, such as Manresa
(2016) and Savje et al. (2019).

4



Table 1: Estimating Advertising Effects with Fragmented Data: An Example

(a) True Data

Identity Device Purchase Ads Actual Effect

1 D 1 2
� = 0M

2 D 1 4M

(b) Fragmented Data

Observed ID Device Purchase Ads Est. Effect
1(a) D 1 2

� = 0.41(b) M 0 0
2(a) D 1 3
2(b) M 0 1

(c) Fragmented Data

Observed ID Device Purchase Ads Est. Effect
1(a) D 1 0

� = −0.41(b) M 0 2
2(a) D 1 1
2(b) M 0 3

3 Characterizing the Identity Fragmentation Bias

We use the term “fragment” to describe any sub-identity that a consumer may have. Fragments
can arise across cookies, devices, channels, or any other measurement unit across which identities
are possibly split. To make the illustration concrete, we focus on the earlier example, where the
research goal is estimating the effect of advertising on purchases and where data are fragmented
across devices. The analysis and results are not constrained to this example.

To facilitate exposition, we consider estimates under the standard linear model. 5 In Section
3.1, we assume that each consumer has two devices and that the researcher cannot separate
observation units by device types. As such, the researcher does not distinguish ad effect across
device types when analyzing the data. We relax this assumption in Section 3.4 and onwards.

3.1 Analysis Framework

The researcher estimates a common effect of advertising exposures on purchases:

H =  + G′� + &. (1)

5The sources of bias we present here persists in nonlinear models, though the exact expression of the bias may change.
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Here, H denotes the dollar spent per user; G represents a  -dimensional vector of covariates
including advertising exposure, and & is the error component. The parameter of interest is �. Let
H 9 , G 9 denote the corresponding variables on device 9 ∈ {1, 2}. By construction, H = H1 + H2 and
G = G1 + G2, representing the aggregate spend and exposure levels for a given user. As usual, we
also assume �[& |G1 , G2] = 0.

The un-fragmented (true) data consists of # observations, reflecting # unique consumers
whose observations are identically and independently distributed. Let . = [H(1) , ..., H(#)]′, -9 =
[G′(1)9 , ..., G

′
(#)9], and define- = [� -1+-2]where � is a length-# vector of ones. If consumer-level

identities were observed, a researcher could obtain an estimate of � by regressing . on -. When
the data is fragmented, however, the researcher observes

.̃ ≡
[
.1

.2

]
, -̃ ≡

[
� -1

� -2

]
.

Without additional information, the researcher treats each device as a different user, assumes that
the number of observations is 2# , and estimates � by regressing .̃ on -̃.

An important aspect of identity fragmentation is how purchases occur across devices. We
allow consumers to have idiosyncratic preferences over how they use devices for purchases, and
capture these preference using a binary variable B(8). In particular, B(8) = 1 implies that consumer 8
completed his purchases on device 1; B(8) = 0means his purchasewasmade on device 2.6 Wedefine
s to be an # × # diagonal matrix where the 8Cℎ diagonal is B(8), and stack these matrices to form

( =

[
s

� − s

]
. We can then express the relationship between the fragmented and un-fragmented

purchases as
.̃ = (.. (2)

We define the expectation of device usage conditional on covariates asΛG = E[s|(-1 , -2)]. Further,
we define, ≡ [�#×# �#×# ], andΩ( +1)×( +1) = 3806(1/2, 1 ). With this notation, we characterize
the relation between the unfragmented covariates (-) and its fragmented version

(
-̃

)
as

- =,-̃Ω (3)

6Making B(8) a continuous variable ∈ [0, 1] does not change our results. The only reason that we assume B(8) = 1 to be binary is that
it is unusual for consumers to split their purchases across devices within a shopping journey.
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Let � ≡
[


�

]
. The regression estimator using fragmented data can now be written as

�̂ = (-̃′-̃)−1(-̃′.̃) (4)

= (-̃′-̃)−1(-̃′(.) (5)

= (-̃′-̃)−1[-̃′((,-̃′Ω� + &)] (6)

We introduce the following assumptions to exclude other conventional forms of bias, so that the
remaining bias is induced solely by identity fragmentation:

Assumption 1. B ⊥ & |(G1 , G2);

Assumption 2. Standard OLS assumptions: exogeneity (E[& |-] = 0), no perfect collinearity (E[--′] >
0), i.i.d. and homoskedastic errors &.

Under these assumptions, we can represent the conditional expectation of � as

E[�̂ |-1 , -2] = Ω� + (-̃′-̃)−1

[
0

(-1 − -2)′[ΛG − 1
2 �]� + [−-′1(� −ΛG)-1 + -′1-2 − -′2ΛG-2]�

]
. (7)

Our main interest is �̂, the estimate for the slope parameter(s). Let ' be the bottom-right
sub-matrix of (-̃′-̃)−1, then the conditional mean of estimation bias for � is (see proof in Appendix
A.1):

E[�̂ |-1 , -2] − � = '

©«
(-1 − -2)′[ΛG −

1
2 �]�︸                       ︷︷                       ︸

Δ3

+ [-′1-2]�︸   ︷︷   ︸
Δ2

−[-′1(� −ΛG)-1 + -′2ΛG-2]�︸                               ︷︷                               ︸
Δ1

ª®®®®¬
(8)

= ' (Δ3 + Δ2 + Δ1) .

3.2 The Bias Components

The multiplier ' in Equation (8) is always positive definite. Therefore, the sign of bias in �̂

is solely determined by the components Δ1, Δ2, and Δ3. Each component represents a specific
form of distortion emerging from the split identities: fragmentation of the outcome variable (Δ1),
fragmentation of the exposure variables (Δ2), and interaction of the fragmented outcome and
exposures (Δ3).
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Δ1 : Purchase Fragmentation

The first bias component results from splits of the outcome variable.. Each row in the fragmented
data only captures a fraction of variation in the original outcome. This type of measurement error
manifests itself via the terms −-′1(� − ΛG)-1 and −-′2ΛG-2, creating an attenuation bias. To see
this mathematically, note that −� < 'Δ1 < 0. Intuitively, since the number of observations is
artificially doubled while the total variation in outcome is constant, there is a direct attenuation on
the measured outcome variation, and subsequently, the estimate. In our advertising example, the
fact that the average customer spend is lower simply because we think there are 2# observations
makes advertising seem less effective than it actually is. This component of the fragmentation bias
always exists, except in the trivial case when � = 0.

Δ2 : Exposure Fragmentation

The second bias component comes from the fragmentation of data on the exposure side. The
fragmentation of identities prevents the model from establishing the association between -’s and
.’s across fragments. To see this, note that the true covariate is - = -1 + -2. However, in the
fragmented data, some rows have -̃ = -1 and consequently, the variation pertaining to -2 is
omitted; in other rows, the opposite occurs. This omission is represented by the interaction term
-′1-2 in Δ2, which is often seen in the characterization of omitted variable bias (see, e.g., Greene
2003 and Wooldridge 2009).

The direction and magnitude of this component depend on -′1-2. When covariates are
normalized to mean-zero before entering the model, -′1-2 is the correlation of ad exposures across
devices. Thus, a stronger, positive (negative) correlation between cross-device ad exposures leads
to a positive (negative), larger bias componentΔ2, the same aswhat occurs for omitted variable bias.
More generally, we see that covariate normalization can change the magnitude of this bias term.
In the special case where ad exposures are independent across devices, normalizing covariates to
mean zero can eliminate this bias component.

Δ3 : Spurious Covariance

This term captures a spurious correlation between .̃ and -̃. Recall that .̃ = (. and that

�[( |(-1 , -2)] =
[

ΛG

� −ΛG

]
. The main element in Δ3, the product (-1 − -2)′(ΛG − 1

2 �), is the

estimate of cov(-̃ , (). This is the covariance between advertising exposure and device usage pref-
erences. This covariance can be nonzero when there is a device-level activity bias. For example,
if a consumer is more likely to see ads and buy products on the same device, then cov(-̃ , () > 0,
creating an upward distortion of the estimator. If the ads and purchases aremade systematically on
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different devices, the resultant distortion goes in the opposite direction. The device-level activity
bias can impact the estimate even when the device usage preference is independent of exposure
levels. That is, even when Λ does not depend on (-1 , -2), cov(-̃ , () ≠ 0 as long as -1 ≠ -2 and
Λ ≠ 1

2 �. As long as there are differential device usage preferences and differential exposure levels,
this bias term will persist.

Spurious correlation can also occur when consumers substitute their purchases across devices
in response to advertising. For example, suppose in response to a promotion on his phone, a
consumer increases the purchases via the phone, but at the same time decrease purchases on
his desktop by the same amount. The advertising is ineffective overall. However, the researcher
overestimates the advertising effect, because she only observes the positive ad-purchase correlation
on the phone and interprets the decrease of consumption on the second desktop as noise. From an
econometric standpoint, this bias is caused by the fact that the fragmentedmeasures for purchases,
(. and (1 − ()., have measurement errors correlated with -.

Activity bias and cross-device substitution represent different consumer behaviors and should
be tackled differently. Activity bias results from consumers’ device usage preferences itself, while
cross-device substitution effects arise due to a shift in device usage caused by ad exposures. As
we will see later, activity bias can be removed by unstacking the fragmented data (i.e., estimating
separate models by device). By contrast, cross-device substitution effects are not eliminated even
when data are unstacked.

3.3 How Does Experiment Help?

In certain conditions, the bias exhibits only attenuation bias with a simple structure. We charac-
terize the condition below:

The Symmetric and independent exposures (SIE) condition is satisfied when both of the following
statements hold:

1. �[G1] = �[G2], +0A[G2
1] = +0A[G2

2]; G1 ⊥ G2;

2. �[s|-1 , -2] = Λ does not depend on (-1 , -2).

Under SIE, �[�̂] = �
2 as long as covariates are normalized to mean-zero before entering the

model. Put differently: if the researcher can guarantee that the exposure across fragments is
symmetric in mean and variance, and that the device preferences do not depend on exposures,
then the estimator is attenuated by a factor exactly equal to the number of fragments. In Coey
and Bailey (2016), attenuation bias occurs when G1 , G2 are i.i.d. distributed and a user purchases
products using each cookie with equal probability: this is a special case of SIE.
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We note that both conditions in SIE are imperative to guarantee an attenuation bias. In
particular, suppose we have an experiment, so that -1 ⊥ -2, but different fragment types receive
different intensities of the treatment. The direction of fragmentation bias will still be arbitrary in
this case. Consider the following numerical example:

�[G1] = 3, �[G2] = 1, �[G2
1] = 10, �[G2

2] = 2; G1 ⊥ G2.

Assume that device preferences are independent of exposure so that E (B |G) = �G = �; and that
� > 0,  = 0. Under this setting, the fragmentation bias is

E[� |-1 , -2] − � =
(
2� − 7

4

)
�.

It is straightforward to see that the bias varies with device preferences �:

� ∈ (7/8, 1] =⇒ �̂ > �;

� ∈ (3/8, 7/8) =⇒ 0 < �̂ < �;

� ∈ [0, 3/8) =⇒ �̂ < 0.

In other words, randomization by itself does not provide additional guarantees regarding the sign
of the fragmentation bias.

An experiment that completely randomizes treatments across device types can help ensure
that the first condition in SIE is satisfied. On the other hand, condition 2 is an assumption on
consumer behavior, which is more likely to be satisfied in certain analysis paradigms than others.
We return to this point in Section 4 where we discuss experiment-based debiasing solutions.

3.4 Generalizations

Device-Specific Effects

When device types are well-defined (e.g., consumers use phones and computers; in contrast,
cookies associated with the same user may all belong to the same type), a researcher may estimate
device-specific advertising effects. They may choose one of the two approaches below, which lead
to different forms of biases. The first specifies device-specific ad variables while still pooling data
across devices. The model is

H =  + G′1�1 + G′2�2 + &. (9)

The stacked data is now -̃ ≡
[
� -1 ∅
� ∅ -2

]
. Let �̂ ≡ [�̂′1 �̂′2]′. Then the bias can be expressed as

the following (see proof in Appendix A.2):

10



�
[
�̂ |-1 , -2

]
− � = '



-′1(ΛG −
1
2 �)�︸             ︷︷             ︸

Δ3

−-′1(� −ΛG)-1�1︸                ︷︷                ︸
Δ1

+-′2ΛG-1�2︸      ︷︷      ︸
Δ2

-′2(
1
2 � −ΛG)�︸             ︷︷             ︸

Δ3

+-′2(� −ΛG)-1�1︸             ︷︷             ︸
Δ2

−-′2ΛG-2�2︸        ︷︷        ︸
Δ1


(10)

As before, the estimation bias contains attenuation effect (Δ1), omitted variable bias (Δ2), and
spurious correlation (Δ3). However, in contrast to the common-effect model, here consumers’
substitution between fragments influences not only the spurious correlation but also the omitted
variable bias, as is reflected by the interaction between ΛG and -1, -2.

The second approach splits data by device type and estimates separate ad effect models. The
fragmentation bias in this case is

�
[
�̂ |-1 , -2

]
− � =


(-′1-1)−1(−-′1(� −ΛG)-1�1︸                ︷︷                ︸

Δ1

+-′2ΛG-1�2︸      ︷︷      ︸
Δ2

)

(-′2-2)−1(−-′2ΛG-2�2︸        ︷︷        ︸
Δ1

+-′2(� −ΛG)-1�1︸             ︷︷             ︸
Δ2

)


Activity bias now disappears because the researcher no longer stacks the fragmented data. How-
ever, other bias components remain. In particular, bias caused by cross-device substitution may
still manifest itself in the omitted-variable-bias term (Δ2). Moreover, unlike in the common-effect
model, here SIE no longer guarantees attenuation bias. This is because the bias terms in different
devices do not cancel out with each other when data from different devices enter separate models.

Extension to J Fragments.

Generalizing our discussion to the case where identities are split into � ≥ 2 fragments is straight-
forward. For the common-effect model, the bias is

�[�̂ |-1 , ..., -�] − � = '



�∑
9=1

-′9(Λ9 −
1
�
�)�

  +

�∑
9=1

-′9(Λ9 − �)-9 +
∑
91≠92

-′91(Λ91 +Λ92)-92
 �

 ;

(11)
where ' is the � × � lower block diagonal of (-̃′-̃)−1. Under a more general set of sym-
metric treatment conditions:

{
�[G 9] = �[G 9′], �[G2

9
] = �[G2

9′], G 9 ⊥ G 9′ ,∀9 ≠ 9′
}
, we can show that

�[� |G1 , ...G�] = �
� .
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We can also extend the results corresponding to the device-specific-effect model to obtain, for
the stacked-data version:

�[�̂ |-1 , ..., -�] − � = '


-′1(Λ1 − 1

� �)� + -′1(Λ1 − �)-1�1 +
∑
9≠1 -

′
1Λ1-9� 9

:
-′
�
(Λ9 − 1

� �)� + -′�(Λ� − �)-��� +
∑
9≠� -

′
�
Λ�-9� 9

 ; (12)

and for the split-sample version:

�[�̂ |-1 , ..., -�] − � =

(-′1-1)−1(-′1(Λ1 − �)-1�1 +

∑
9≠1 -

′
1Λ1-9� 9)

:
(-′

�
-�)−1(-′

�
(Λ� − �)-��� +

∑
9≠� -

′
�
Λ�-9� 9)

 . (13)

Results associated with the bias are analogous to the two-device version.

3.5 Other Extensions

While associated results are not reported, we have considered settings where the researcher is
interested in other model forms, including treatment-effect type estimators and nonlinear models
(e.g., logit). Wehave also considered caseswheredatamay exhibit falsematching, partialmatching,
or probabilistic matching.7 Our general finding across these models, settings, and specifications is
that (a) the identity fragmentation bias continues to exists; (b) the bias structure is driven by some
combination of the three components aforementioned; (c) in most cases the sign of the bias cannot
be easily determined.

4 Solution Comparison

In this section, we compare three solutions to identity fragmentation bias: identity linking,
experiment-based estimator adjustment, and stratified aggregation. Below we discuss their re-
spective strengths and limitations.

4.1 Identity Linking

Identity linking is often the go-to solution for practitioners. This approach aims to construct
individual-level data from the fragmented ones, either by matching fragments that share the same
characteristics (probabilistic matching) or by exchanging credentials associated with the same user
(deterministic matching).

7Many of these analysis may be added to the paper in subsequent versions. They are available from the authors upon request.
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It is not hard to see the intuitive appeal of this approach. However, as the advertising industry
responds to privacy concerns, many previously prevalent linking methods will become obsolete.
For example, many probabilistic matching methods rely on third-party cookies, which will no
longer work once Chrome stops their third-party cookie support.8 Other methods that rely on
first-party data requires consent from consumers for data to be shared. As a result, these methods
can only link part of the fragmented records in practice.

In some cases, partially linked data can exacerbate the fragmentation bias. Suppose the pooled
data contain a proportion A of fragmented users. The resulting estimator is the weighted average
of the “pure” estimators (Durbin, 1953; Theil and Goldberger, 1961):

�̂< = $�̂ 5 + (� − $)�̂; , where $ = (A-̃′-̃ + (1 − A)-′-)−1A-̃′-̃ ,

where �̂ 5 is the estimator using only the fragmented data, while �̂; is the estimator obtained from
the unfragmented data alone. It follows that �[�̂< |-] − � = $(�[�̂ 5 |-] − �). The problems with
this estimator are that since $ is a matrix, (i) $ does not necessarily increase “monotonically” with
A; (ii) $ redistributes the bias in each element inside the vector �[�̂ 5 |-] −�. In simulations, we see
that with intermediate ranges of A, �̂< is often further away from �, and sometimes the bias takes
the reversed sign compared to �̂ 5 . The potential sign reversal and the amplified bias magnitude
makes it even harder to bound the bias term.

4.2 Experiment-Based Estimator Adjustment

In Section 3.3 and 3.4, we show that when SIE holds, the slope estimator in a common-effect
model is attenuated by the number of fragments per user. Thus, we can construct an unbiased
estimator, ��̂, by multiplying the original estimator with the number of fragments. The confidence
interval of this adjusted estimator is at least

√
� times the confidence interval of the estimator with

unfragmented data. This lack of power is caused by the loss of variation created by fragmentation.

To use this debiasing approach, a key question iswhen SIE holds. The first condition in SIE can
be satisfied by running an experiment that completely randomizes treatments (e.g., ad exposures)
across devices. However, due to activity bias, the second condition is likely to be violatedwhen the
researcher estimates the actual treatment effect. Thus, we recommend researchers focus on intent-
to-treat: in this case, both conditions in SIE hold as long as a completely randomized experiment
takes place. We also note that when users each has a different number of fragments, the estimator
will assign more weights to users with more fragments. In practice, these are likely users with
more frequent activities.

8https://headerbidding.co/universal-id-adtech/
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4.3 Stratified Aggregation

A third solution is to aggregate fragmented units into higher-level groups, such that all fragmented
identities of a consumer are collapsed within the aggregation. A simple form of aggregation is
analyzing data at the geographic level, such as county, city, or stores (Joo et al., 2013; Kalyanam
et al., 2018; Blake et al., forthcoming). While simple aggregationprovides robustness, it significantly
reduces statistical power and restricts the ability to examine heterogeneity.

To alleviate the power problem, we propose stratified-aggregation. This approach uses ob-
servable user characteristic combinations to construct more granular bins, such that all fragments
of a given user still fall into the same bin. For example, we can define bins by collapsing fragments
that have the same zipcode × gender × age × education combination. The idea of using combi-
nations of non-unique user characteristics to construct unique values for matching is similar to
the technique used in probabilistic matching. However, unlike probabilistic matching, stratified
aggregation does not require that matching be conducted at the individual level. In doing so, it
allows for a more complete match. Given the caveats of partially matched data, we believe that
stratified aggregation is more desirable.

The granularity (and in turn, the effective sample size and power) increases with the number
of observable user characteristics. For example, Rocher, Hendrickx and De Montjoye (2019) show
that for the US population, a group constructed from 3 demographic variables consists of a unique
individual 58% of the time; with a 4th variable, the probability of the group consisting of one
individual increases to 80%. Thus, stratified aggregation is more effective when there are many
observable user characteristics for use (more columns) and when the number of observations is
large (more rows). We caution that stratified aggregation may not perform as well when the
covariates used for matching are measured with error (e.g., Neumann et al. 2019).

As with experiment-based adjustment, stratified aggregation gives different weights to differ-
ent users. In this case, users in smaller bins are weighted more. These users are likely consumers
with more frequent activities or with rarer attributes.

Summary. Although identity linking is popular among practitioners, results based on par-
tially linked data can be misleading. We recommend that research that uses identity linking
services obtain metrics for the match rate, and interpret their estimates with caution. Experiment-
based adjustment requires an experiment that completely randomizes treatment across fragment
types (or exogenous variation that achieves the same effect), and only delivers a valid intent-to-
treat effect under a common-effect model. Nevertheless, it is simple to implement when all the
conditions hold. Stratified aggregation requires the least assumptions, and can be applied when
the model of interest is nonlinear or even structural. However, it comes at the cost of statistical
power.
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5 Empirical Application

The goal of this application is to show the magnitude of identity fragmentation bias in a realistic
setting and to demonstrate the performance of stratified aggregation. We first describe the institu-
tional background, and present data patterns that indicate the existence of identity fragmentation
bias, then proceed to the estimation result discussion.

5.1 The Context

We focus on digital attribution, namely, the problem of assigning credit for a positive outcome of
interest (e.g., visits, engagements, conversions) across a variety ofmarketing and advertising touch-
points (Li and Kannan, 2014; Barajas et al., 2016; Berman, 2018). Any solution to the attribution
problem relies on our ability to estimate the effect these marketing interventions have on the
relevant outcomes. One can view this estimation as a digital analog of the classic marketing mix
model, albeit on a much more granular scale. These estimators are calibrated on data obtained
either via experimentation (e.g., Barajas et al. 2016) or, more commonly, via observation. In either
case, the unit of analysis is often the cookie. Problems created by identity fragmentation are relevant
in this context.

The data comes froman online seller of durable products. The goal of the exercise is to estimate
the impact that various forms of online advertising have on customer engagement, measured by
qualified visits to the firm’s website. Our data has 391,195 observations, including the following
variables: engagement (.); display ads, search ads, and social media ads (X).

The original data is a matched dataset, meaning that observations are at the individual con-
sumer level. The data also records the devices where engagements and advertising exposures take
place. These devices are classified as desktop, mobile phone, and tablets. We construct the frag-
mented data by dividing each observation into three fragments, each corresponding to a specific
device. This data is observational and consequently we warn the reader from interpreting effects
as causal. To the extent that marketing may be targeted, we conjecture that the implied targeting
bias will be positive.

5.2 Data Descriptives

In total there are three types of bias components that contribute to the identity fragmentation bias:
attenuation caused by measurement error on ., omitted variable bias via fragmentation of -, and
spurious correlation generated by activity bias and/or device substitution during purchases. The
bias induced bymeasurement error on. always exists in fragmented data. Omitted variable biases
will exist if -9’s are correlated with each other. In our data, advertising exposures on different
devices are not significantly correlated with each other, so omitted variable bias is likely to be a
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secondary issue. Therefore, we focus our attention on examining the evidence of activity bias and
device substitution effects.

Activity bias exists if the average tendency of engagement on each device is positively cor-
related with ads on each device. Figure 1 shows the distribution of ads on different devices: it
is heavy on mobile phones, less heavy on desktops, and minimal for tablets. The distribution
of engagements (Figure 2) shows a similar pattern across devices. The resemblance of the two
histograms suggests the existence of activity bias.

Figure 1: Ad Exposure across Devices

Figure 2: Engagement Distribution across Devices

Device substitution during purchases in response to advertising exposure will also contribute
to the bias. Examining the cross-correlation matrix between -9’s and .9’s is a simple approach
to check if such substitution exists. Formally speaking, if there is no device substitution, that is,
B 9 ⊥ (-1 , ...-�), then �>AA(.9 , -9) = Λ9 · �>AA(., -9′),∀9 , 9′. This means that in the case of � = 3,

�>AA(.1 , -1) : �>AA(.2 , -1) : �>AA(.3 , -1) = �>AA(.1 , -2) : �>AA(.2 , -2) : �>AA(.3 , -2)
=�>AA(.1 , -3) : �>AA(.2 , -3) : �>AA(.3 , -3) = Λ1 : Λ2 : Λ3.
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In other words, if device substitution is absent, we should expect different columns of the corre-
lation matrix to be proportional to each other (same for rows). Table 2 shows that this is not the
case.

A slightly more informal route to discerning device substitution involves comparing the diag-
onal of thematrix (roughly corresponding to the estimate using fragmented data)with the column-
sums (corresponding to common-effect estimates using matched data). A diagonal element larger
than the column-sum indicates that device substitution bias dominates the measurement error
effect on .. In Table 2, we see that the diagonal elements are much larger than the column-sum in
most cases. This strong device substitution pattern is likely to bias the estimates upward.

Table 2: Correlations Between Purchase Patterns and Advertising Exposure across Devices

(a) Search

Search< Search3 SearchC
Y< 0.2057 -0.0439 -0.0128
Y3 -0.0446 0.1914 -0.0172
YC -0.0201 -0.0117 0.2422

(b) Social

Social< Social3 SocialC
Y< 0.0642 -0.0229 -0.0046
Y3 -0.0163 0.0949 -0.0039
YC -0.0064 -0.0079 0.0715

(c) Display

Display< Display3 DisplayC
Y< 0.1363 -0.0756 -0.0192
Y3 -0.0488 0.2147 -0.0131
YC -0.0224 -0.0218 0.1518

5.3 Estimation Results

In Table 3, we present the estimates related to the common-effect and device-specific-effect models.
A few points are worth mentioning. First, across all specifications, identity fragmentation leads
to inflated estimates. In the common-effect specification, the magnitude of inflation ranges from
40% (search ad effect) to 88% (display ad effect). Identity fragmentation also leads to narrower
confidence intervals compared to the true estimates: this is caused by the fact that the number
of “observations” is tripled in the fragmented data. The combination of inflated point estimates
and shrunk confidence interval leads to zero overlap between the fragmented and true estimates.
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Similar upward biases are seen in the device-specific-effect model, with the inflation in estimates
ranging from 28% (Social on Tablet) to 91% (Display on Mobile). Overall, there are significant
upward biases that could have serious consequences formarketing investment decisions if ignored.

Table 3: Fragmentation Bias Estimates

(a) Common Effects Model

True Est True SE Fragmented Est Fragmented SE Bias Ratio ([3]/[1])
Intercept 0.9540 0.0024 0.3008 0.0009 0.3153

Search 0.2584 0.0025 0.3626 0.0016 1.4032
Social 0.1439 0.0039 0.2157 0.0026 1.4991

Display 0.0428 0.0007 0.0806 0.0005 1.8816

(b) Device-Specific Effects Model

True Est True SE Fragmented Est Fragmented SE Bias Ratio ([3]/[1])
Intercept 0.9535 0.0024 0.3006 0.0009 3.1720
Search.m 0.2564 0.0031 0.3699 0.0020 1.4430
Social.m 0.1191 0.0047 0.1859 0.0031 1.5603

Display.m 0.0396 0.0010 0.0759 0.0006 1.9160
Search.d 0.2741 0.0052 0.3733 0.0034 1.3622
Social.d 0.1985 0.0075 0.2836 0.0049 1.4285

Display.d 0.0456 0.0010 0.0849 0.0007 1.8597
Search.t 0.2394 0.0076 0.2979 0.0050 1.2445
Social.t 0.2516 0.0280 0.3238 0.0183 1.2868

Display.t 0.0449 0.0038 0.0813 0.0025 1.8116

5.4 Stratified Aggregation

We now turn to the examination of a proposed solution for the fragmentation bias. Since the
original dataset does not contain customer demographics or other variables to aggregate around,
we simulate a set of demographic variables and use them to augment the original data. In
particular, for each true identity, we assign an MSA variable uniformly drawn from one of 48
districts; Age drawn uniformly within the [18, 82] range; and Income drawn from one of 10 discrete
income buckets.

Figure 3 shows the results of the stratified aggregation exercise. Although the 95% confidence
intervals for the aggregated estimates are significantly larger in most cases, they contain the
confidence intervals of true estimates as well as the point estimates from the unfragmented data.
The aggregated estimates for the tablet ad effects do not perform as well since both purchases
and ad exposures on the tablet are scarce. Even so, the results are significantly superior to those
obtained when the identity fragmentation issues are ignored.
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Figure 3: Estimator Comparison across Different Data

(a) Common Effects Model
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(b) Device-Specific Effects Model
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Note: The horizontal dashed lines indicate the estimated effect sizes, with black, red and blue representing the true (unfragmented),
fragmented and stratefied aggregation based estimates. The vertical lines the 95% confidence region.
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6 Discussion and Future Directions

Using data with fragmented user identifiers leads to a persistent bias in estimators. We analyt-
ically characterize the bias and show that this bias can have an arbitrary sign. Based on this
analytic characterization, we compare three debiasing solutions. Despite its popularity, identity
linking can exacerbate the bias and complicate the effort of bounding the estimate when linking
is incomplete. Experiment-based estimator adjustment relies on a set of strong assumptions and
practicality requirements, but is simple and effective when these requirements are met. Stratified
aggregation requires the least assumptions, and can be applied to obtain unbiased estimates for a
more generalized set of models. However, it comes at a cost of statistical power.

Although we base our formal analysis on a linear-model setup, the results can also apply to
generalized linearmodels, including discrete choicemodels and Poisson regressions. For example,
one can rewrite a logistic regression as a linear regression of log odds on covariates. The attenuation
bias is more likely to occur in discrete choice models, since estimated magnitudes are relative to
the residual term. When the model is incorrectly specified, the residual term tends to be larger,
and we expect the estimators to exhibit stronger attenuation.

We look forward to future research that further investigates solutions to identity fragmentation
bias. Without these solutions, the post-cookie world can render data analytics difficult or even
impossible for most firms, while a few established firms who can obtain complete user data using
a login wall can have a stronger incumbent advantage. By characterizing the bias and discussing
existing solutions, we hope to contribute to this discussion and provide a more even playing field
in the cookieless landscape.
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Appendix A Proof for Identity Fragmentation Bias

A.1 Common-Effect Model

Under the assumptions laid out in the paper, we have & ⊥ (B, G1 , G2) ⇒ �[6(G1 , G2 , B)&] = 0,∀6.
Therefore:

�[�̂ |-1 , -2] = (-̃′-̃)−1 ·
(
-̃′ ·

[
ΛG

� −ΛG

]
, · -̃

)
·Ω�

= Ω� + (-̃′-̃)−1 ·
(
-̃′ ·

[
(ΛG − �)� ΛG

(� −ΛG)� −ΛG

]
· -̃

)
·Ω�.

(A.1)
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To get �[� |-1 , -2] − �, only the bottom-right block entry of (-̃′-̃)−1 needs to be calculated.
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Note that '−1 is always positive definite. Moreover,

lim
#→∞

1
#
'−1 = +0A[-1] ++0A[-2] +
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is also positive definite.
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A.2 Device-Specific-Effect Model

With a device-specific-effect model, we use the same notation to represent slightly different objects.

The first change involves the covariates: -̃ ≡
[
� -1 ∅
� ∅ -2

]
. Second, the dimension ofΩ changes

from : + 1 to 2: + 1; as before, the first element of Ω is 1/2 and the rest are 1. With the same
notation, Equation (A.1) in Section A.1 still holds. Now
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Combining Equation (A.5) with Equation (A.1),
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Here as before, ' is the bottom-right diagonal matrix of (-̃′-̃)−1; now it has dimension 2: × 2:.
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